

Unité de Recherche Appliquée en Energies Renouvelables, Ghardaïa – Algérie 15, 16 et 17 Octobre 2012

Elaboration et Caracterisation Optique de Couches Minces de la Chalcopyrite (Cufes₂) pour les Applications Thermophotovoltaiques

HAMDADOU N., BOUHMIDI M.

Département de Physique et Chimie, Ecole Normale Supérieure de l'Enseignement Technologique d'Oran (ENSET-Oran), BP 1523 El Mnaouer Oran 31000, Algérie.

nhamdadou@gmail.com

Med.bouhmidi@yahoo.fr

Résumé Dans un système TPV, la radiation thermique infrarouge est convertie en électricité par des cellules photoélectriques. Le fonctionnement d'un système TPV ne peut se faire que pour des sources de températures avoisinant 1500 K, et ceci nécessite des matériaux semiconducteurs de faible largeur de la bande interdite (0.4-0.7 eV), ainsi qu'un matériau émetteur sélectif et un corps noir.

Les matériaux semiconducteurs à faible largeur de la bande interdite intéressent de plus en plus les applications thermophotovoltaïques (TPV). La chalcopyrite CuFeS₂ est un semiconducteur à bande interdite directe de largeur 0.6 eV, en couche mince il peut être utilisé comme couche absorbante dans une cellule thermophotovoltaïque.

Des couches minces de CuFeS₂ ont été élaborées. L'élaboration est établie sur deux étapes, la première consistait à déposer une couche de précurseur métallique CuFe, par des évaporations alternées sous vide ($p = 10^{-3}$ Pa) de couches minces Cu/Fe.../Cu avec le rapport atomique pré requis. Le dépôt des couches de Cu et Fe s'est fait sur des substrats chauffés à 723 K. Dans la deuxième étape, la couche mince du précurseur CuFe était soumise à une sulfurisation, pendant 20 minutes à la température 773 K. Les résultats de la caractérisation structurale nous ont permis de constater la bonne qualité cristalline des couches

minces élaborées. La caractérisation optique des couches minces obtenues est établie par des mesures d'absorbance à la température ambiante sur les couches minces de CuFeS₂ déposées sur verre, ces mesures ont été effectuées dans l'intervalle de longueur d'onde [300-2500 nm]. Le coefficient d'absorption optique α a été déduit, ce qui a permis l'évaluation de la nature et la largeur de la bande interdite. Ainsi cette dernière est de nature directe et la valeur de sa largeur est : $E_{\alpha} = 0.61 \,\text{eV}$.

 $Mots \ clés$ — Cellule thermophotovoltaïque, couche mince, CuFeS₂, évaporation, absorption optique

I. INTRODUCTION

Les composés ternaires à petite largeur de bande interdite, intéressent de plus en plus les travaux de recherche. La

production de l'électricité par voie thermophotovoltaïque [1, 2] représente une application parmi d'autres de ce type de matériaux.

Dans un système thermophotovoltaïque, la radiation thermique est convertie en électricité par des cellules photovoltaïques. Le fonctionnement du système TPV (fig.1) ne peut se faire que pour des sources de températures avoisinant 1500 K, et ceci nécessite des matériaux semiconducteurs de faible largeur de la bande interdite (0.4-0.7 eV), ainsi qu'un matériau émetteur sélectif et un corps noir [1]. La découverte du procédé thermophotovoltaïque date de l'année 1960, et durant les dernières années les études portant sur ce procédé ont donné des résultats très prometteurs [2].

Fig. 1 Schémas illustrant un système photovoltaïque (a) et un système thermophotovoltaïque (b)

Dans ce travail, nous présentons une étude sur des couches minces de CuFeS₂. Ces couches sont élaborées par sulfurisation de couches de précurseurs métalliques de Cu et Fe. Afin de contrôler la qualité des couches élaborées, nous avons établis deux caractérisations, structurale et optique.

Le 2^{ème} Séminaire International sur les Energies Nouvelles et Renouvelables The 2nd International Seminar on New and Renewable Energies

Unité de Recherche Appliquée en Energies Renouvelables, Ghardaïa – Algérie 15, 16 et 17 Octobre 2012

II. ELABORATION DE COUCHES MINCES DE CuFeS₂

Les substrats utilisés sont en verre, nous les avons nettoyés à l'aide du savon médical (La Bétadine), rincés abondamment à l'eau distillée puis séchés avec un flux d'azote. L'élaboration des couches minces de CuFeS₂ est établie sur deux étapes [4, 5].

Le précurseur métallique CuFe est déposé dans une première étape, par des évaporations alternées sous vide ($p = 10^{-3}$ Pa) de couches minces Cu/Fe.../Cu avec le rapport atomique pré requis. Le dépôt des couches de Cu et Fe s'est fait sur des substrats chauffés à 723 K, et ceci afin d'avoir un précurseur métallique homogène. Le nombre de couches de Cu et Fe déposées est de 3 et 2 respectivement, avec une vitesse de dépôt de 0.1 nm s⁻¹ et 0.2 nm s⁻¹ respectivement, leurs épaisseurs sont dans l'intervalle 10-20 nm.

L'étape suivante consiste à sulfuriser sous vide ($p = 10^{-3}$ Pa) dans une atmosphère de soufre, le précurseur métallique dans une deuxième enceinte. La durée de la sulfurisation est de 20 minutes et la température des substrats pendant la sulfuration est de 773 K.

III. CARACTERISATION DE COUCHES MINCES DE CuFeS $_2$

III.1 ANALYSE PAR LA DIFFRACTION DE RAYONS X

Le diagramme de diffraction de la couche obtenue est donné par la figure 2, les couches possèdent une seule phase et les pics correspondent au CuFeS₂ (JCPDS N° 81-1959). Par comparaison avec la fiche JCPDS, il apparaît qu'il y a une orientation préférentielle des grains suivant la direction (112). Connaissant les valeurs des d_{hkl} , nous avons déduit les paramètres du réseau à l'aide de la relation suivante :

$$\frac{1}{d_{hkl}^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

Ainsi, les valeurs des paramètres du réseau calculées sont : $a = 5.26 \text{A}^{\circ}$ et $c = 10.26 \text{A}^{\circ}$.

Fig. 2 Diagramme de diffraction d'une couche mince de CuFeS2

III.2 ETUDES QUANTITATIVES PAR MICROANALYSE ET XPS

Les résultats de la microanalyse et de l'XPS (tableau I), établies sur les couches de CuFeS₂, révèlent un léger excès de soufre en surface, tandis qu'en profondeur la stœchiométrie est observée de façon claire.

TABLEAU I RESULTATS QUANTITATIFS DE LA MICROANALYSE ET DE L'XPS, POUR UNE COUCHE MINCE DE CUFES₂ OBTENUE PAR SULFURISATION

Elément	Résultats de l'XPS (%) en fonction du temps de décapage (min)			Microanalyse (%)
	0	1	3	
Cu	9	24	23	27
Fe	26	26	26	23
S	65	50	51	50

III.3 ETUDE DE LA MORPHOLOGIE PAR LE MEB

La visualisation des surfaces des couches par microscopie électronique à balayage (fig.3), confirme l'état polycristallin des couches. Les cristallites sont de forme pyramidale et sont réparties de façon uniforme sur la totalité de la surface de la couche.

Le 2^{ème} Séminaire International sur les Energies Nouvelles et Renouvelables The 2nd International Seminar on New and Renewable Energies

Unité de Recherche Appliquée en Energies Renouvelables, Ghardaïa – Algérie 15, 16 et 17 Octobre 2012

(b)

Fig. 3 Photographies MEB de la surface d'une couche mince de $CuFeS_2$ aux grossissements faible (a) et fort (b)

III.4 ETUDE DES PROPRIETES OPTIQUES

Des mesures d'absorbance à la température ambiante sur les couches minces de $CuFeS_2$ déposées sur verre, ont été effectuées dans l'intervalle de longueur d'onde [300-2500 nm], nous pouvons observer (fig.4) l'augmentation brutale de l'absorbance à 1500 nm.

Par contre il y a une zone de forte absorbance de 300 nm à 1500 nm. Ainsi nous pouvons identifier l'exciton A, l'exciton B étant moins bien résolu.

Fig. 4 Spectre d'absorption optique d'une couche de \mbox{CuFeS}_2 déposée sur verre

Le coefficient d'absorption optique α d'une couche mince, peut être déterminé [5] grâce aux mesures de l'absorbance (ou la densité optique), à partir desquelles on déduit les valeurs de la transmission à l'aide de la formule suivante :

$$\alpha = -\frac{1}{2} \ln \left[T / (1 - R)^2 \right] \qquad (1$$

où *T*: transmission en fonction de la longueur d'onde, elle est déduite de l'absorbance *A*par la relation $T=1/\exp A$, *R*: réflectivité en fonction de la longueur d'onde et *e*: épaisseur de la couche.

Nous avons calculé le coefficient d'absorption α en considérant que la réflectivité ne dépend pas de l'énergie incidente et est égale à 0.3. L'équation (1) devient donc :

$$\alpha = -\frac{1}{e} \ln \frac{T}{0.49} \qquad (2)$$

Les résultats du calcul de α d'une couche mince de CuFeS₂ d'épaisseur $e = 1 \mu m$, sont représentés par la figure 5.

Fig. 5 Coefficient d'absorption optique d'une couche mince de CuFeS₂ déposée sur verre

Cependant, connaissant la nature de la bande interdite qui est directe dans le cas du CuFeS₂, nous avons déterminé la valeur de la largeur de la bande interdite E_g . En effet, le coefficient d'absorption optique peut être exprimé par la relation :

$$\alpha = \frac{A}{h\nu} (h\nu - E_g)^{\frac{1}{2}} \quad (3)$$

et par suite :

$$(\alpha h \upsilon)^2 = A(h \upsilon - E_{\sigma})$$
(4)

Il est donc possible de déterminer la valeur de E_g en extrapolant à zéro la partie linéaire de la courbe représentant la fonction $(\alpha h \upsilon)^2 = f(h \upsilon)$. La figure 6 montre une telle extrapolation dans le cas d'une couche mince de CuFeS₂. La valeur de la largeur de la bande interdite est $E_g = 0.615$ eV, valeur en bon accord avec la valeur donnée par les travaux antérieurs ($E_g = 0.6$ eV) [6].

Le 2^{ème} Séminaire International sur les Energies Nouvelles et Renouvelables The 2nd International Seminar on New and Renewable Energies

Unité de Recherche Appliquée en Energies Renouvelables, Ghardaïa – Algérie 15, 16 et 17 Octobre 2012

Fig. 6 Extrapolation à zéro de la courbe représentant la fonction $(\alpha h \nu)^2 = f(h \nu)$, dans le cas d'une couche mince de CuFeS₂

IV. CONCLUSION

Dans ce travail, nous avons réussi à élaborer en couches minces le $CuFeS_2$, par sulfurisation d'un précurseur métallique CuFe. Le procédé est simple et reproductible. Les couches obtenues présentent des propriétés structurales intéressantes. La caractérisation optique des couches a permis

de confirmer la nature directe et la valeur de la largeur de la bande interdite $E_g = 0.615 \text{ eV}$.

REFERENCES

- J. Touskova, D. Kindl, E. Samochin, J. Tousek, E Hulicius, J. Pangrac, T. Simecek and Z. Vyborny, *Solar Energy Materials & Solar Cells* 676(2003) p135.
- [2] T. J. Coutts; Solar Energy Materials & Solar Cells, 66 (2001) p443.
- [3] S. Marsillac, J. C. Bernède, C. El Moctar and J. Pouzet; *Mater. Sci. Eng.*, B45 (1997) p69.
- [4] K. Benchouk., É. Benseddik., C. O. El Moctar., J. C. Bernède., S. Marsillac., J. Pouzet and A. Khelil; *Eur. Phys. J. AP*, 10 (2000) p9.
- [5] D. Bhattacharyya, S. Chaudhuri and A. K. Pal; Vacuum, 43(4) (1992) p313.
- [6] P. Velàsquez, H. Gomez, J. R. Ramos-Barrado and D. Leinen; *Colloids and Surfaces A*, 140 (1998) pp369-375.