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Abstract- Gas turbines are complex processes characterized by 

the instability and uncertainty of various sources. The range of 

useful operating in an axial compressor which is part of a turbine 

gas is limited by aerodynamic instabilities that are pumping and 

rotating stall. These hazardous phenomena limit compression 

systems performance and can cause mechanical damages. 

Furthermore speed transitions, which can lead to temporary stall 

development and pressure drop at the output, degrade the 

effective operation of compressors and consequently gas turbines. 

Several  mathematical models have been developed for explain the 

operation of a gas turbine. These models give good understanding 

nonlinearities, providing an effective way to develop control 

strategies to increase the operating range and improve 

performance of a gas turbine. Due to not precise knowledge of the 

compressor map and not full-state feedback of these models, a 

robust nonlinear control method based on feedback linearization 

is applied to tackle this open control problem. 

 

Keywords— Gas turbine, Axial compressor , surge, rotating stall, 

sliding mode control, robust non linear control. 

I.  INTRODUCTION  

The development experienced by civil or military aviation, 

the growth of the industry processes as well as the field of the 

generation of one energy are related to the development an 

essential element which is the gas turbine. The latter is a 

machine that produces mechanical energy and high velocity 

exhaust gases and high temperature. The mechanical energy is 

used to drive a compressor, fan, etc. 

The gas turbine is however subject to nonlinear phenomena 

of different nature: aerodynamic (pump and rotating stall), aero-

elasticity (the float) and combustion that do not allow proper 

operation [1]. In this work, we will focus on the aerodynamic 

non linearities. Gas turbine suffer from two types of instabilities 

which limit their efficiency and performance: rotating stall and 

surge. These phenomena are closely related. Rotating stall is a 

non-axisymmetric perturbation that travels around the annulus 

of the compressor while surge is a large axial oscillation of the 

flow [1]. 

The low order model of Moore and Greitzer for the post stall 

transients of axial compression systems has been used 

extensively in stall/surge analysis and control. In the original 

work of Moore and Greitzer the compressor speed is assumed 

constant. If the equilibrium of the compression systems is 

located to the left of the surge line which passes through the 

local maxima of the compressor characteristic, the flow 

becomes unstable. Dependent on certain system parameters and 

as be demonstrated in [2], the compressor speed, the instability 

can take the form of rotating stall, surge or both. This model has 

been successfully applied to a wide variety of stability and 

control problems.  

Moore and Greitzer model has the following advantages: it 

captures most nonlinear and operational effects. It is low order 

and physical rather than computational [3]. In 1997, Gravdahl 

and Egeland [1] derived a similar model and investigated surge 

and speed control. However, these models were both developed 

for centrifugal machines, and did not include rotating stall as a 

state. For the first time, the model developed by Gravdahl  for 

axial compressors considered the B-parameter (proportional to 

the speed of the compressor) as a state and included higher 

harmonics of rotating stall as well [3].         

This new high order extension of Moore-Greitzer model not 

only shows the previous qualitative behavior such as surge and 

stall development but also introduces some novel phenomena 

as a direct consequence of adding the new state to the model. 

These phenomena can exclusively be described by the non-

constant speed model [1].  Gravdahl [3] initially demonstrated 

the temporary development of rotating stall at an operating 

point far from surge line because of speed variations. Model 

simulations showed that amplitudes of rotating stall harmonics 

temporarily increase while the machine is accelerating, but are 

quickly damped out as desired speed is reached [4]. Output 

pressure also drops during speed transitions.  

Contrary to Gravdahl’s non-constant speed model, Moore-

Greitzer original model does not imply any rotating stall 

development, since the working point is situated by an adequate 
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margin to surge line. This temporary stall development and 

pressure drop can cause trouble for the normal operation of 

turbo machines [4]. Furthermore, including model uncertainties 

(the precise estimation of model parameters, especially in the 

unstable zone, being difficult) and external perturbations make 

the problem even more challenging [10]. Finally, the squared 

amplitude of stall modes used as state variables are 

experimentally difficult to measure and full-state feedback 

cannot be considered in control design.    In this work, throttle 

and close-coupled valve (CCV) actuation are used to guarantee 

the stability, and a drive torque is applied to increase the speed 

of the rotor. CCV is considered to be one of the most promising 

actuation methods [5]. To develop the controller, the amplitude 

of rotating stall, which cannot be measured but is one of the 

state variables in Gravdahl’s model, is considered as a 

disturbance.  

This assumption being supported by the proof of 

perturbations boundedness greatly simplifies the design. 

Furthermore, the control scheme does not require an accurate 

knowledge of model parameters. Simulation results corroborate 

analytical developments and demonstrate the disturbance 

rejection and the global ultimate boundedness of state variables 

which leads to surge and rotating stall control. 

 

II. GRAVDAHL-ENGLAND MODEL DEVELOPEMENT 

This is an extension of the Moore-Greitzer model, where 

appropriate considering the compressor speed variation. It is 

also a multi-mode model to a better understanding of 

aerodynamic non linearities: the rotating stall and pumping. 

This model contains the parameter B Greitzer as a state. It 

incorporates more dynamic spool (shaft). 

In this section we review the development of Gravdahl’s 

model [2] for variable speed axial compressors in order to 

render the paper reasonably self-contained. The compression 

system consists of an inlet duct, inlet guide vanes IGV, variable 

speed axial compressor, exit duct, plenum volume and throttle 

(Figure 1). Throttle can be regarded as a simplified model of a 

turbine. 

 

 
 

Fig.1: Schematic of compressor showing non dimension 

lengths [2]   
 

The Gravdhal final model with Closed coupled Valve, 
taking en consideration the spool dynamics: 
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The precedent equations (1-4) introduce the new state space 

model in which higher harmonics and the effect of viscosity are 

included. In these equations W, H and 𝜓𝑐0 are parameters 

defining the shape of the compressor characteristic map (Figure 

2). a  and b are constants (see [7, 8] for further details.). All 

distances are non-dimensionalized with respect to the mean 

compressor radius R. 𝑙𝐸 =
𝐿𝐸

𝑅⁄   and 𝑙𝐶 =
𝐿𝐶

𝑅⁄ where the 

lengths 𝑙𝐸 and 𝑙𝐶  ' are depicted in Figure 1. In what follows, a 

normalized time 𝜉 = 𝑈𝑑 ∗ 𝑡 𝑅⁄  is also used to write the 

dynamics where 𝑈𝑑 is the desired constant velocity of the 

wheel. 

The turbine torque Γ𝑡 and the compressor torque Γ𝑐 are non-

dimensionalized  

                                       Γ = Γ𝑡 − Γ𝑐                                      (5) 

The compressor torque is given by  

                           Γ𝑐 = −Φ2(tan β
1

− tanβ
2

)                        (6) 

β
1
and β

2
are constant blade angles at rotor entrance and 

exit respectively [4]. The term  (tan β
1

− tanβ
2

) is 

constant. 
The relation between 𝑚𝑈 and the compressor speed U is: 

                       𝑚𝐵 = (𝑚 − 1)
𝑈𝑑

𝑈
− 1                                     (7) 

Compression system characteristic (compressor map) 

Ψc(ϕ) represents the relation between pressure rise at the 

output of the compressor and mass flow expressed as a 
nonlinear curve. 

 

Ψc(Φ) =  𝜓co + H ∗ [1 +
3

2
(

Φ

W
− 1) −

1

2
(

Φ

W
− 1)

3

]             (8) 

 

Note that, throttle characteristic is considered as: 
 

                                    𝜙𝑇 = 𝛾𝑇√Ψ                                        
(9) 

 

large 𝛾𝑇implies an open throttle and small 𝛾𝑇means a closed 

throttle, and 𝛾𝑣 is closed coupled valve gain. 

At equilibrium, we have: 

 

                           Φ̇ = Ψ̇ = 0                                               (10) 
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4
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Fig. 2: Compressor Map  W, H and 𝜓𝑐0 [4] 

 

which lead to two equilibria. The first one, 𝐽𝑒1 = 0, corresponds 

to the compressor being in its active operating point (OP). The 

second one, 𝐽𝑒2 = 4 (1 − (
Φ

𝑊
− 1)

2

−
𝐽

4
) > 0, corresponds to 

the system being in a fully developed rotating stall. For the 

second 𝐽𝑒2, one can obtain the stall characteristic Ψ𝑆(Φ)of the 

compressor [4]. 

Ψs(Φ) =  𝜓co + H ∗ [1 −
3

2
(
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5

2
(

Φ

W
− 1)

3

]           (12) 

 

 
Fig. 3: Ψc(Φ) , 𝜙𝑇(Ψ) and Ψs(Φ) [4] 

 

III. MODEL BEHAVIOR AND NON-LINEARITIES ANALYSIS 

A complete bifurcation analysis of the gravdhal  model in 

equation (1,2,3,4) has been carried out [4]. The Mancont 

continuation and bifurcation software [6] has been used to carry 

out the computations. The computed bifurcation diagram, for 

mass flow Φ with varying throttle parameter 𝛾𝑇, for the case 

Ud=160, is presented in Figure 4. (Similar bifurcation diagrams 

for the other variables, Jn and Ψ, can also be plotted.)  
Sari et al. [4] developed the bifurcation analysis of Gravdahl’s 

model for non-constant speed axial compressors. Figure 4 shows 

one of the bifurcation diagrams of the model where equilibria of a 

non-constant speed axial compression system are depicted as a 

function of throttle gain (bifurcation parameter). Figure 4 contains 

information about all steady states and their stability, and 

identifies bifurcation points where steady states exchange 

stability, new steady states are created, or existing steady states 

disappear. 

The subcritical bifurcation point represents the peak value of 

pressure rise where the axisymmetric flow loses stability. 

 
             
 Fig. 4.a: Bifurcation diagram of mass flow 

 

 
 

Fig. 4.b: Bifurcation diagram of first stall harmonic 
 

Limit cycles originating from Hopf bifurcation point H 

(inferior) represent classical surge with J>0. Classic surge 

cycles occur only for a narrow range of values of the throttle 

parameter 𝛾𝑇, and are therefore plotted separately in Fig. 4.b on 

a different parameter axis scale. Limit cycles from Hopf point 

H (superior) are not plotted because they are found to have 

negative R and are therefore nonphysical. Bifurcation diagrams, 

such as that in Fig.4, can be used to identify parameter regions 

of different global stability behavior [7]. 

 

IV. FINAL DYNAMIC MODEL OF VARIABLE SPEED AXIAL 

COMPRESSOR 

 

Gravdahl developed a model for variable speed axial 

compressors and considered the speed of the rotor as a state 

variable [2]. Later, Zaiet et al. [8] modified the model to include 

the pressure drop over a CCV and to make it suitable for control 

applications.  

At an operating point (Φ0,Ψ0, U0), the dynamic model can be 

given in the form of state-space  equations in error coordinates 

(see [4,2] for details). The model which is only includes the first 

harmonic of rotating stall and comprises actuator forces, is 

given in the following equations: 
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2H
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bH
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μW

3aH
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3Hb
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Where Φ, Ψ and 𝑈 denote respectively the annulus averaged 

mass flow coefficient, the non-dimensional plenum pressure, 

and the speed of the rotor. 𝐽1 is the squared amplitude of the first 

harmonic of rotating stall. The actuators’ forces are input 

variables 𝑢1, 𝑢2 and 𝑢3 defined respectively as: the pressure 

drop over CCV, the throttle gain, and the non-dimensional                

drive torque being used to increase the speed. The definition of 

the remaining model parameters H, W, ψc0, γv, Λ1, Λ2, m, b, 𝜇 

and  a, which are all positive non-zero parameters, can be found 

in [4]. To investigate the effect of uncertainties, we introduce 

ΔΦ and ΔΨ in the model. ΔΦ  consists of two terms : Φ𝑑which 

is a time varying mass flow disturbance and Φ𝑑 which 

introduces a constant or slow varying uncertainty in the throttle 

characteristic. Similarly, ΔΨ consists of two terms: Ψ𝑑which is 

a time varying pressure disturbance and 𝑑Ψ which can be 

thought of as a constant or slow varying uncertainty in the 

compressor map. Furthermore, it is supposed that these 

uncertain terms are bounded. 

 

V. CONTROL DESIGN  

    Let us consider the model (13,14,15,16) as a square MIMO  

nonlinear affine uncertain system: 

                        Σ1: �̇� = f(x) + ∑ gi(x)ui
m
i=1                          (18) 

where the state variable 𝑥 = (𝜙, 𝐽, Ψ, 𝑈) belongs to ℝ4and the 

control input  𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ ℝ3 Here, f(x)and g(x) are 

uncertain smooth functions and 𝑦 = (𝜙, Ψ, 𝑈) ∈ ℝ3 is a smooth 

measurable output vector. Σ1 is defined in error coordinates and 

in the regulation problem, the objective is to make the outputs 

vanish in finite time [9]. 

A. Control of Surge and Rotating Stall 

Let us define outputs for system Σ1 as follows: 

 

                           𝑦1,2 = [y1, y2]T = [ϕ, ψ]T                        (19) 

 

Where 𝜙 = Φ − Φ0, 𝜓 = Ψ − Ψ0 with  Φ0 and  Ψ0 is the 

efficient Operating Point at the peak of the compressor map. 
Here, the first time derivative of sliding variables yields:   

 

                  Σ2: [y1̇(𝑥), y2̇ (𝑥)]T = A(𝑥) + B(𝑥)u             (20)                       

 

Vector A(x) and matrix B(x) can be partitioned into nominal 

and unknown parts  as follows: 

                             {
A(x) = A̅(x) + ∆A(x)

B(x) = B̅(x) + ∆B(x)
                     (21) 

 

Nominal parts (A̅(x), B̅(x))and  are known a priori.  ∆A and  

∆𝐵 traditionally comprise the model uncertainties and 

perturbations. In this work, however we consider all terms 

comprising J in ∆A. Although J is a model state variable, it 

cannot be measured, moreover its nature as a perturbation 

conveys the idea that it can be thought of as uncertain terms. 

This approach simplifies the control design and makes the 

proposed control method applicable.  

Assumption 1: We assume that there is an a priori known 

constant ρ such boundedness of ∆A is ensured. 

Assumption 2: We assume that matrix B̅(x)  is nonsingular 

and the associated zero dynamics of  ∑ 2 are  asymptotically 

table. 

Assume that Assumptions 1-2 are fulfilled. Then, the control 

law: 

            𝑢𝑖 =  B̅−1(−A̅ + 𝑊𝑖,𝑛𝑜𝑚 + 𝑊𝑖,𝑠𝑙𝑖𝑑  )   i = 1,2          (22) 

The terms 𝑊𝑖,𝑛𝑜𝑚 = − 𝛽𝑖𝑦𝑖   are introduced to stabilize the 

nominal part of system (∆A= 0), where 𝛽𝑖is a control positive 

parameter [10]. 

we define an augmented sliding variable Sa ∈ R2and its 

associated discontinuous control law as follows: 

                   Sa(y, Saux) = [𝑦1, y2]T + 𝑆𝑎𝑢𝑥                           (23) 

where auxiliary function 𝑆𝑎𝑢𝑥 ∈ 𝑅2 with  𝑆𝑎𝑢𝑥
̇ =  𝛽𝑖𝑦𝑖   is used 

in the design of the augmented sliding variable and 

discontinuous control law 𝑊𝑖,𝑠𝑙𝑖𝑑  (y, Saux) ∈ 𝑅2. The time 

derivative of along the system trajectories Sa(y, Saux)can be 

expressed as: 

                Ṡa = [�̇�, �̇�]
T

+ 𝛽𝑖𝑦𝑖  = 𝑊𝑖,𝑠𝑙𝑖𝑑 + ΔA                    (24) 

The control law stabilizing the nominal system and rejecting the 

uncertainties of the model takes the final form  

 

𝑢𝑖 =  B̅−1(−A̅ −  𝛽𝑖𝑦𝑖 − 𝛼𝑖  sign( 𝛽𝑖𝑦𝑖 + ∫ 𝛽𝑖𝑦𝑖) )i = 1,2                

(25) 

𝛼𝑖 is a control positive parameter. For proof, see [11]. 

 

B. Control of variable Speed 

Let us consider the model (16) as a SISO nonlinear affine 

system.  

                         U̇ = 𝐴3(𝜙2, 𝑈2) + 𝐵3(𝑈2)𝑢3                     (26) 

We designed a sliding surface with good nature and made the 

system possess the desired properties when make the system 

limits on the sliding surface. In order to facilitate control, we 

make the system reach the sliding surface and keep sliding. So, 

we can define the following tracking error [13].  

                                     𝑒3 = 𝑈 − 𝑈𝑑                                    (27) 
The speed error can be written as 

           �̇�3 = �̇� − �̇�𝑑 = 𝐴3(𝜙2, 𝑈2) + 𝐵3(𝑈2)𝑢3 − �̇�𝑑       (28) 
Define a time-varying proportional integral sliding mode surface 

[12]. 
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                           𝑆 = 𝛽3𝑒3 − ∫ 𝛽3
𝑡

0
𝐿𝑒3(𝜏)𝑑𝜏                       (29)    

 

With 𝛽𝑖is a control positive parameter, and 𝐿 is negative value. 

Under the sliding mode, the equation  𝑆 = 𝑆 = 0̇  must be 

satisfied, where  

                   𝑆 =̇ 𝛽3𝐴3 + 𝛽3𝐵3𝑢3 − 𝛽3�̇�𝑑 − 𝛽3𝐿𝑒3              (30) 

To meet the sliding conditions, the following controller is 

designed 

  𝑢3 = (−𝛽3𝐵3)−1(𝛽3𝐴3 − 𝛽3�̇�𝑑 − 𝛽3𝐿𝑒3 + 𝜀 𝑠𝑖𝑔𝑛(𝑆))    (31) 

where 𝑠𝑖𝑔𝑛(𝑆)is sign function.  

Assume that the constant 𝜀 satisfied the condition 𝜀 > 1 .Then 

the system (26) can reach the sliding mode 𝑆 = 0 in a limited 

time under the controller (31), with a variable speed reference 

𝑈𝑑. For proof, see [14]. 

 

VI. THE NUMERICAL SIMULATION 

In the following time-domain simulations, we simultaneously 

control the speed and surge/rotating stall which is called closed-

loop. 

To realize the simulations two types of perturbations are applied 

to the system denoted by ϕ𝑑(𝜉), 𝜓𝑑(𝜉) are considered as mass 

flow and pressure disturbances respectively and  
𝑑𝜙, 𝑑𝜓which represents the uncertainty of compressor map and 

throttle characteristic. 

The numerical values of the simulations are given in Table 1. 

 

Table 1: Numerical values used in simulations 

W 0.25 ϕ𝑑(𝜉)=𝜓𝑑(𝜉) 0.01sin (0.2𝜉) 

H 0.18 𝑙𝐼 1.75 

𝜇 0.001 𝑑𝜙 −0.05 

b 96.16 𝑑𝜓 0.02 

m 1.75 Λ1 2.1685e-4 

𝑙𝑐 3 Λ2 0.0189 

 

Figure 5 shows the variables Φ and Ψ in the phase space along 

with equivalent compressor map and stall characteristic. The 

system start from an effective initial operating point (OP) at the 

top of the equivalent compressor map (i.e. compressor 

comprising CCV). 

Examining of the Figure 5, we found that the system dynamic  

in closed loop, stay close to his efficiency operating point 

(0.5,0.66) despite the existence of uncertainties, perturbation 

(negligible variation ). 

As reported in [4], when speed varies at an efficient operating 

point (e.g. at the peak of the equivalent compressor map), 

temporary stall developments can lead to a fully developed 

rotating stall. Here, we will show that the proposed robust 

nonlinear controller prevents the system from developing such 

a rotating stall. 

Figure 7 shows that on the other hand in closed loop, the 

controller effectively stabilizes the compression system at the 

efficient OP and prevents it from developing a steady rotating 

stall due to the speed variation.  

 
Fig. 5. Closed loop System Map  

 

Previously reported results in [4], show that pressure and flow 

external perturbations can destroy the stability of compressors 

at an efficient OP and lead to fully developed rotating stall or 

deep surge depending on the speed of the rotor (i.e. for low 

speeds the system goes to rotating stall and for high speeds it 

develops deep surge). Here, we consider the case of high speed 

operation (according to [2],[4]) and demonstrate that the 

controller can effectively reject the perturbations and guarantee 

the stability of the system. 

 
Fig.6.Flow and Pressure uncertainties 

 
Output pressure, rotor speed, rotating stall, and control efforts 

are respectively reported in figure 7. 

 
Fig.7. System Dynamic in Closed Loop Robust Sliding 

Mode Control 
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At  𝜉 = 10 , the controller is activated and closes the loop. It 

immediately damps out rotating stall (Figure 8) and manipulate 

the throttle valve. Consequently, we note a variation in throttle 

actuator (Figure 7), despite that the system still close in his 

efficient OP, where the pressure is high enough for normal 

operation of the gas turbine. 

This Result shows the effectiveness of the proposed control 

law in surge and rotating stall control. 

 
Fig. 8. Rotating Stall Harmonics 

 
The only weakness of this robust nonlinear controller is 
the existence of variations in throttle valve manipulated 

control signal, it needs to be carefully investigated.The 

actuator dynamics and saturations will be treated in future 

works. 

 

VII. CONCLUSION  

This paper show that a gas turbine, which is variable speed in 

nature, suffers from temporarily developed instabilities which 

may lead to a steady and fully developed rotating stall or surge,  

and reveal the impact of speed transitions (output signal ) and 

throttle gain (control signal)  on the stability of compression 

systems. 

By the addition of model uncertainties and external 

perturbations, and impossibility to have a full feedback control 

(rotating stall is no measurable) forms a challenging problem. 

The robust sliding mode control method based on feedback 

linearization was the favorite control philosophy to tackle this 

open control problem. The proposed controller does not require 

the precise knowledge of the compressor map and does not use 

a full-state feedback. The only assumption made here is the 

boundedness of external perturbations and model uncertainties. 

Time-domain simulations demonstrate that the controller can 

damp out system instabilities including surge or rotating stall, 

prevent the system from developing temporary rotating stall 

during speed variations and effectively reject external 

perturbations. 

 The limitations and the dynamic of the actuators and sensors 

have not taken into consideration, which needs to be studied 

further. 
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